
 

SURVEY ON SYSTEM ARCHITECTURE FOR WIRELESS SENSOR NETWORKS 

RAHMAAN K
1
, ANBUMANI P

2
 & NARENDRAN M

3
 

1
Final Year, Tagore Institute of Engineering and Technology, Deviyakurichi, Tamil Nadu, India 

2,3
Assistant Professor, Tagore Institute of Engineering and Technology, Deviyakurichi, Tamil Nadu, India 

 

ABSTRACT 

In this paper we present and operating system and three generations of a hardware platform designed to address 

the needs of wireless sensor networks. In this operating system, called Tiny OS uses an event based execution model to 

provide support for fine-grained concurrency and incorporates a highly efficient component model; Tiny OS enables us to 

use a hardware architecture that has a single processor time shared between both application and protocol processing. It's 

show how a virtual partitioning of computational resources not only leads to efficient resource utilization but allows for a 

rich interface between application and protocol processing. In that rich interface, in turn, allows developers it's exploit 

application specific communication protocols that significantly improve system performance. Hardware platforms we 

develop are used to validate a generalized architecture that is technology independent. This general architecture contains a 

single central controller that performs both application and protocol-level processing. It's flexibility, this controller 

isdirectly connected to the RF transceiver. It's efficiency, the controller is supported by a collection of hardware 

acceleratorsthat provide basic communication primitives that can be flexibility composed into application specific 

protocols. 

KEYWORDS: Wireless Sensor Networks, TinyOS, AM Communication Paradigm, Data Collection 

INTRODUCTION 

The emerging field of wireless sensor networks combines sensing, with computation, and communication into a 

single tiny device. It's through advanced mesh networking protocols, in this devices form a sea of connectivity that extends 

the reach of cyberspace out into the physical world. Water flows to fill every room of a submerged ship, mesh networking 

connectivity will seek out and exploit any possible communication path by hopping data from node to node in search of its 

destination. The capabilities of any single device are minimal the composition of hundreds of devices offers radical new 

technological possibilities. The power of wireless sensor networks lies to the ability to deploy large numbers of tiny nodes 

that assemble and configure themselves. The usage scenarios for these devices range from real-time tracking, it’s 

monitoring of environmental conditions, ubiquitous computing environments, to situ monitoring of the health of structures 

or equipment. Often referred to as wireless sensor networks, they can also control actuators that extend control from 

cyberspace into the physical world. The most straightforward application of wireless sensor network technology to monitor 

remote environments for low frequency data trends. For example, a chemical plant could be easily monitored for leaks by 

hundreds of sensors that automatically form a wireless interconnection network and immediately report the detection of 

chemical leaks.  

Unlike traditional wired systems, deployment costs would minimal. Instead of having to deploy thousands of feet 

of wire routed through protective conduit, installers simply have to place quarter-sized device, such as the one pictured in 

at each sensing point. The network could be incrementally extended by simply adding more devices – no rework or 

complex configuration. With in this devices presented in this paper , the system would be capable of monitoring for 

International Journal of Computer Science 

and Engineering (IJCSE) 

ISSN 2278-9960 

Vol. 2, Issue 3, July 2013, 69-80 

© IASET 



70                                                                                                                                                                         Rahmaan K, Anbumani P & Narendran M 

anomalies for several years on a single set o batteries. In addition to reducing the installation costs, wireless sensor 

networks have the ability to dynamically adapt to changing environments. Adaptation mechanisms can respond to changes 

in network topologies or can cause the network to shift between different modes of operation. Example, the same 

embedded network performing leak monitoring in a chemical factory might be reconfigured into a network designed to 

localize the source of a leak and track the diffusion of poisonous gases. 

 

Figure 1: DOT – Wireless Sensor Network Device Deliberate to be the Estimated Size of Area 

The network could then direct workers to the safest path for emergency emigration. Current wireless systems only 

scratch the surface of possibilities emerging from the amalgamation of low-power announcement, sensing, energy storing, 

and computation. 

TinyOS has been designed to run on a generalized architecture where a single CPU is shared between application 

and protocol handling. We detail three generations of wireless nodes and a host of application deployments that have 

verified the capabilities of our general system architecture. The Mica platform has been produced in the largest quantities – 

over 5000 Mica nodes have been produced and distributed to over 250 companies and research establishments from around 

the world. The Mica platform includes a low power transceiver, power management subsystem extended storage and 

embedded microcontroller. The most advanced hardware platform we present is a single-chip CMOS device that integrates 

the processing speed , storage and communication capabilities to form a complete classification node. This single chip 

node – called Spec – measures just 2.5 mm x 2.5 mm, it's contains a micro controller, with transmitter, ADC, general 

resolve I/O ports, UART, memory and encryption engine. To the tiny chip only needs to be supported by a 32 KHz watch 

crystal, an off-chip inductor and a power supply a battery and a 4 MHz clock. The Spec node represents the approaching 

generation of wireless sensor nodes that will be manufactured for currencies and deployed in the millions. 

WIRELESS SENSOR NETWORKS 

The concept of wireless sensor networks is based on a simple equation: 

Sensing + CPU + Radio = Thousands of potential applications 

As soon as people understand the capabilities of a wireless sensor network, hundreds of applications spiral to 

mind. It seems like a straightforward combination of modern equipment. However actually combining sensors radios and 

CPU’s into an operative wireless sensor network requires a detailed understanding of the both capabilities and limitations 

of each of the fundamental hardware components, as well as a detailed understanding of modern schmoozing technologies 

and dispersed structures theory. Each individual node must be designed to deliver the set of primitives necessary to 

synthesize the interconnected web that will emerge as they are positioned, while meeting severe requirements of size, cost 

and power consumption. A core experiment is to map the overall system requirements down to individual device 



Survey on System Architecture for Wireless Sensor Networks                                                                                                                                         71 

capabilities requirements and activities. To make the wireless sensor network vision authenticity architecture must be 

developed that produces the envisioned applications out of the underlying hardware capabilities.  

To develop this system architecture we work since the high level application requirements down through the low-

level hardware necessities. In this process we first attempt to understand the set of target submissions. To limit the number 

of applications that we must consider, we focus on a set of application classes that we believe are demonstrative of a large 

segment of the potential usage scenarios. We use this set of application classes to explore the system-level necessities that 

are placed on the overall architecture. From these system-level requirements we can then drill down into the separate node-

level requirements. Moreover, we must provide a detailed contextual into the capabilities of modern hardware. After we 

present the raw hardware competences, we present a rudimentary wireless sensor node. The Rene node represents a first 

censored at system architecture, and is used for comparison against the system architectures obtainable in later chapters. 

Sensor Network Application Classes 

Three application classes we have selected: 

 Environmental data collection 

 Security monitoring 

 Sensor node tracking. 

Environmental Data Collection 

At the network level, the environmental data collection application is categorized by having a large number of 

nodes continually sensing and transmitting data back to a set of base stations that store the data using traditional methods. 

These networks generally require very low data rates and tremendously long lifetimes. In typical usage scenario, the nodes 

will be evenly dispersed over an outdoor environment. This distance between adjacent nodes will be minimal yet the 

distance across the whole network will be significant. After placement, the nodes must first discover the topology of the 

network and estimate optimum routing strategies [10].  

The routing strategy can then be used to direction data to a central collection points. In ecological monitoring 

applications, it is not indispensable that the nodes develop the optimal routing strategies on their own. Instead it may be 

possible to calculate the optimal routing topology outside of the network and then interconnect the necessary information 

to the nodes as required. This is possible because the physical topology of the network is moderately constant. While the 

time variant nature of RF announcement may cause connectivity between two nodes to be alternating, the overall topology 

of the network will be moderately stable. Environmental data collection applications typically use tree-based routing 

topologies where each routing tree is entrenched at high-capability nodes that sink data. Data is occasionally transmitted 

from child node to parent node up the tree-structure until it reaches the sink. By tree-based data collection each node is 

responsible for systematic the data of its entire offspring. Nodes with a large number of pro genies transmit significantly 

more data than leaf nodes. These nodes can rapidly become energy bottlenecks [11, 12]. Once the network is configured, 

each node occasionally samples its sensors and transmits its data up the routing tree and back to the base station. For many 

scenarios, the interval between these programs can be on the order of minutes.  

Typical reporting periods are expected to be between 1 and 15 minutes; while it is possible for networks to have 

meaningfully higher reporting rates. The typical environment parameters being monitored, such as illness, light 

concentrations, and moisture, do not change quickly sufficient to require higher reporting rates. In addition to huge sample 

intervals, environmental monitoring applications do not have severe latency requirements. Data samples can be behind 



72                                                                                                                                                                         Rahmaan K, Anbumani P & Narendran M 

inside the network for moderate periods of time without significantly affecting application performance. In general the data 

is collected for future inquiry not for real-time operation. In order to meet lifetime supplies each communication event 

must be precisely scheduled. The senor nodes will remain latent a majority of the time; they will only awaken to transmit 

or receive data. If the precise schedule is not met the communication proceedings will fail. 

Security Monitoring 

Additionally, it is essential that it is confirmed that each node is still contemporary and functioning. If a node were 

to be disabled or fail it would signify a security violation that should be reported. For security monitoring solicitations the 

network must be configured so that nodes are responsible for authorizing the status of each other. One approach is to have 

each node be allocated to peer that will report if a node is not functioning. The optimal topology of a security monitoring 

network will look moderately different from that of a data collection network. 

In a collection tree each node must convey the data of all of its decedents. Because of this it is finest to have a 

short wide tree. In contrast, with a security network the optimum configuration would be to have a linear topology that 

forms a Hamiltonian cycle of the network. The power consumption of each node is only comparative to the number of 

children it has. In a linear system, each node would need only one child. This would evenly distribute the energy depletion 

of the network. The accepted norm for security systems today is that each sensor should be checked nearly once per hour. 

Combined with the ability to evenly dispense the load of checking nodes, the energy cost of performing this check 

becomes negligible. A majority of the energy depletion in a security network is spent on meeting the strict latency 

requirements associated with the signalling the alarm when a security violation happens. Once detected a security violation 

must be connected to the base station immediately. The latency of the data announcement across the network to the base 

station has a critical impact on application performance. Users demand that alarm circumstances be reported within 

seconds of detection. This means that network nodes must be able to re-join quickly to requests from their neighbours to 

forward data.  

In security networks reducing the latency of an alarm transmission is meaningfully more important than reducing 

the energy cost of the transmissions. This is because alarm events are predictable to be rare. In a fire security system 

alarms would nearly never be signalled. In the event that one does occur a significant amount of energy could be 

enthusiastic to the transmission. Reducing the transmission inexpression leads to higher energy consumption because 

routing nodes must monitor the radio channel more frequently. In security networks a massive majority of the energy will 

be spend on confirming the functionality of neighbouring nodes and in being organized to instantly forward alarm 

pronouncements. Actual data transmission will consume a small segment of the network energy. 

Sensor Node Tracking 

A third usage scenario commonly discussed for sensor networks is the chasing of a tagged object through a region 

of space monitored by a sensor network. There are many circumstances where one would like to track the location of 

valuable assets or personnel. Current uncatalogued control systems attempt to track objects by recording the last 

checkpoint that an object passed through. However with these systems it is not possible to regulate the current location of 

an object. For example UPS pathways every shipment by scanning it with a bar code whenever it passes through a routing 

center. The system breaks down when objects do not flow from barrier to barrier. In typical work environments it is 

unreasonable to expect objects to be continually passed through checkpoints. 

With wireless sensor networks objects can be chased by simply tagging them with a small sensor node. The 

sensor node will be tracked as it moves complete a field of sensor nodes that are deployed in the environment at known 



Survey on System Architecture for Wireless Sensor Networks                                                                                                                                         73 

locations. Instead of sensing ecological data these nodes will be deployed to sense the RF messages of the nodes attached 

various objects. The nodes can be used as active tags that broadcast the presence of device. A database can be used to 

record the location of chased objects relative to the set of nodes at known location. With this system it becomes possible to 

ask anywhere an object is currently, not just where it was last scanned [13]. Unlike sensing or security networks node 

tracking applications will repeatedly have topology changes as nodes move through the network. While the connectivity 

amongst the nodes at fixed locations will remain relatively stable, the connectivity to mobile nodes will be repeatedly 

changing.  

Additionally the set of nodes being tracked will recurrently change as objects enter and leave the system. It is 

necessary that the network be able to efficiently detect the presence of new nodes that enter the network. 

SYSTEM EVALUATION METRICS 

One result is that many of these evaluation metrics are consistent. Often it may be necessary to decrease 

presentation in one metric such as sample rate in order to increase another such as lifetime. Taken composed, this set of 

metrics form a multidimensional space that can be used to designate the capabilities of a wireless sensor network. The 

capabilities of a platform are characterized by a volume in this multidimensional space that contains all of the valid 

effective points. In turn a specific application deployment is represented by a particular point. A system platform can 

successfully perform the submission if and only if the application requirements point lies inside the capability hyperspace. 

Lifetime 

Dangerous to any wireless sensor network deployment is the expected lifetime. The goal of both the ecological 

monitoring and security application scenarios is to have nodes placed out in the arena unattended for months or years. The 

main limiting factor for the lifetime of a sensor network is the energy supply. Each node must be designed to manage its 

local source of energy in order to maximize total network lifetime. In many placements it is not the average node lifetime 

that is significant but rather the minimum node lifetime. In the case of wireless safety systems, every node necessity last 

for multiple years. A single node failure would create susceptibility in the security systems. 

Coverage 

Tied to range is a linkage’s ability to scale to a large number of nodes. Scalability is a key component of the 

wireless sensor network value proposal. A user can deploy a small trial network at first and then can recurrently add sense 

points to collect more and different information. A user must be confident that the network knowledge being used is 

capable of scaling to meet his eventual need. Increasing the number of nodes in the system will influence either the lifetime 

or effective sample rate. More sensing points will cause more data to be transmitted which will increase the power 

ingesting of the network. This can be offset by specimen less often. 

Cost and Ease of Deployment 

A key improvement of wireless sensor networks is their ease of deployment. Environmentalists and construction 

workers installing networks cannot be expected to understand the underlying networking and communication mechanisms 

at work inside the wireless network. For system deployments to be effective the wireless sensor network must configure 

itself. It must be possible for nodes to be placed throughout the situation by an untrained person and have the system 

simply work. Ideally the system would mechanically configure itself for any possible physical node placement. However, 

real systems must place restraints on actual node placements – it is not possible to have nodes with immeasurable range. 

The wireless sensor network must be capable of providing response as to when these constraints are violated. 



74                                                                                                                                                                         Rahmaan K, Anbumani P & Narendran M 

The network should be able to assess quality of the network positioning and indicate any potential problems. This 

translates to requiring that each device be capable of performing link discovery and influential link quality. 

Response Time 

The ability to have low response time conflicts with many of the procedures used to increase network lifetime. 

Network lifetime can be increased by having nodes only operate their wirelesses for brief periods of time. If a node only 

opportunities on its radio once per minute to transmit and receive data, it would be impossible to meet the application 

necessities for response time of a security system. 

Response time can be better-quality by including nodes that are powered all the time. These nodes can listen for 

the alarm messages and forward them down a routing backbone when essential. This, however, reduces the comfort of 

deployment for the system. 

SOFTWARE ARCHITECTURE FOR WIRELESS 

TinyOS draws strongly from previous architectural work on lightweight filament support and efficient network 

interfaces. Included in the TinyOS system architecture is an Active Communications system. We believe that there is an 

important fit between the event based nature of network sensor applications and the event created primitives of the Active 

Messages communication model. In operational with wireless sensor networks two issues emerge strongly these devices 

are concurrency concentrated several different flows of data must be kept moving concurrently and the system must 

provide efficient modularity hardware specific and application specific mechanisms must snap together with little 

processing and storage overhead. We address these two problems in the context of current system sensor knowledge and 

the tiny micro threaded OS. Analysis of this solution provides valuable initial instructions for architectural innovation. 

Tiny Micro Threading Operating System(TinyOS) 

Surviving embedded device operating systems do not meet the size power and efficiency requirements of this 

regime. These requirements are amazingly similar to that of building efficient network interfaces which also must maintain 

a large number of concurrent flows and manipulate numerous outstanding events [19]. In network boundary cards, these 

issues have been tackled through corporal parallelism [11] and virtual machines [12]. We tackle it by building an 

extremely efficient multithreading engine. As in TAM [12] and CILK [13], TinyOS maintains a two-level scheduling 

structure so a small amount of dispensation associated with hardware events can be performed directly while long running 

tasks are interrupted. The execution model is similar to finite state mechanism models, but noticeably more programmable.  

TinyOS is designed to scale with the current technology trends supporting both smaller, tightly integrated designs, 

as well as the border of software components into hardware. This is in contrast to old-fashioned notions of scalability that 

are centered on scaling up total power/resources/work for a given computing pattern. It is essential that software 

architecture plans for the eventual incorporation of sensors, processing and announcement. In order to qualify the vision of 

single-chip a low cost sensor node TinyOS combines an exceedingly efficient execution model component model and 

communication devices 

TinyOS Component Model 

In addition to using the highly effectual event-based execution, TinyOS also includes a specially designed 

component model directing highly effectual modularity and easy composition. An efficient component model is 

indispensable for embedded systems to increase reliability deprived of sacrificing performance. The component model 



Survey on System Architecture for Wireless Sensor Networks                                                                                                                                         75 

allows an application designer to be able to easily combine independent components into an application specific 

configuration. 

 

Figure 2: Component Diagram for Sensing Application 

In TinyOS, each module is defined by the set of instructions and events that makes up its interface. In turn, a 

complete system requirement is a listing of the components to include plus a specification for the interconnection between 

components. The TinyOS constituent has four interrelated parts a set of command handlers a set of event handlers an 

encapsulated private data frame, and a bundle of simple tasks. Responsibilities commands and event handlers execute in 

the context of the frame and operate on its state. To simplify modularity each component also declares the commands it 

uses and the events it signals. These announcements are used to facilitate the composition process. As shown in Figure 2, 

composition creates a graph of components where high level components issue commands to lower level apparatuses and 

lower level apparatuses signal events to the higher level components. The lowest layer of apparatuses interacts directly 

with the essential hardware. 

A specialized language NESC has been commercial to express the component graph and the command/event 

boundaries between components. In NESC multiple understanding and events can be grouped together into interfaces. 

Interfaces simplify the interconnection between apparatuses. In TinyOS, storage frames are statically allocated to allow the 

memory necessities of the complete application to be unwavering at compile time. The frame is a dedicated C Structure 

that is statically allocated and directly accessible only to the component. While TinyOS does not have memory fortification 

variables cannot be directly accessed from outside of a constituent. In addition to allowing the calculation of maximum 

memory requirements pre-allocation of frames prevents the overhead associated with active allocation and avoids pointer 

related errors. This savings establishes itself in many ways, including performance time savings because variable locations 

can be statically compiled into the program instead of accessing state via pointers.  

In TinyOS, instructions are non-blocking requests made to lower level components. Characteristically a command 

will deposit request parameters into its local frame and provisionally post a task for later execution. It may also invoke 

lower instructions but it must not wait for long or indeterminate latency actions to take place. A appreciation must provide 

feedback to its caller by returning status indicating whether it was effective or not, e.g., buffer overrun. Event trainers are 

invoked to deal with hardware events either directly or indirectly. The lowest level components have supervisors that are 

connected directly to hardware interrupts which may be exterior interrupts timer events or counter events. An event 

handler can deposit data into its frame, post tasks, signal advanced level events or call lower level commands. A hardware 



76                                                                                                                                                                         Rahmaan K, Anbumani P & Narendran M 

event triggers a cascade of processing that goes upward through events and can bend downward through commands. In 

order to avoid cycles in the command/event chain instructions cannot signal events. Both commands and events are 

intended to perform a small fixed amount of work which happens within the context of their component’s state. 

COMPONENTS CONTAINED IN TINYOS 

There are several system level components that are involved in TinyOS. Moreover, there are a collection of 

example presentations that demonstrate the usages of the TinyOS system. 

 

Figure 3: Components Contained in TinyOS 

We have developed a generalized design for wireless sensor nodes that builds from the single controller design 

used in Rene. The architecture is based on the principle that shared pools of resources should be used when possible to 

exploit the benefits of dynamic allocation, that buffering needs be used to decouple the general purpose data path and the 

radio, and that protocol plasticity is essential. It addresses performance and efficiency issues by including special-purpose 

hardware accelerators for management the real-time, high-speed necessities of the radio. Accelerators deliver general 

building blocks, not comprehensive solutions. The core of the architecture is a central computational engine that is 

timeshared across submission and protocol processing. Only a single calculation engine is included because it allows the 

allocation of all processing resources to a single task when necessary. We show that this allows for an efficient use of 

dispensation capabilities. Ideally this single processor includes extra hardware provision for the fine-grained concurrency 

that it must provide. As this processor is intended to be allotted to multiple concurrent operations it must be designed so 

that framework switching is as efficient as possible. A traditional mechanism for decreasing context switch overhead is 

through the inclusion of register openings. Multiple register sets can be included in the CPU so that each context switch 

does not require the indexes to be written out to memory. Instead the operating system basically switches to a free register 

set. As is typical in microcontroller designs, the data path is connected to the rest of the system components through a 

shared interconnect.  

Memory I/O ports analogue-to-digital converters, system timers and hardware accelerators are devoted to this 

interconnects. By utilizing a high-speed, low latency interconnect, data can be moved easily between the processor, 



Survey on System Architecture for Wireless Sensor Networks                                                                                                                                         77 

memory and peripheral devices. In addition to allowing the CPU to interact with its peripheral devices, this communal 

interconnect also allows the separate peripheral devices to interact with each other. A peripheral placed on this bus has the 

ability to wrench data directly out of the memory subsystem or to push data into a UART marginal. This creates a highly 

plastic system where a data encoding peripheral can pull data directly from memory and push it into a data transmission 

accelerator, such as modulation of an RF announcement channel. In such a system, the CPU is simply composing the data 

transmission it does not have to directly handle the data. All devices on this shared interrelate operate through a shared 

memory interface. 

Each device has control structures that are charted into a shared address space. This allows apparatuses that were 

not originally intended to function together to be combined in new and interesting ways. A data encoder intended to read 

from memory, transform data, and write to memory many not even know that it is actually pulling data from a radio 

receiver block’s memory interface and assertive it into a UART’s portion of the communication memory. In this 

architecture, the size of the communal address space dedicated to each operation can be set animatedly to meet application 

requirements. The true power of this system is in the special-purpose hardware accelerators that it qualifies. These 

accelerators provide efficient applications of low-level operations that are inefficient on a general-purpose data path. Each 

accelerator is designed to provide support for operations that are critical to sensor network announcement. By increasing 

the efficiency of these processes, the overall power ingesting of the system can be greatly reduced. It is important that these 

accelerators are communication primitives in its place of complete protocol implementations so that the system can support 

a wide range of announcement protocols instantaneously simply finished software reconfiguration. 

The hardware accelerators also support operations that need to be achieved as fast as possible to optimize the 

radio power consumption. This includes support for start symbol discovery as well as the low-level bit inflection. The goal 

is to include the minimum hardware functionality that is essential to efficiently support the needs of applications and 

decouple communication rates from processing rates. While the hardware accelerators are designed to deliver primitives 

that can be used to construct communication protocols, these primitives are not unavoidably simple. For example, a 

hardware accelerator for encryption would be considered a primitive.  

This component would take the data it remains given and encode or decrypt it as necessary. As a hardware 

accelerator it could be used for encoded communications, data verification, or to safeguard that data stored in an off-chip 

flash is kept secure. The hardware accelerator would be applied so that the core cryptographic alteration was unprotected to 

the CPU and other peripherals. This is in contrast to a system where an entire secure communication subsystem would be 

encapsulated without exposing any of the internal primitives. Once again this design choice allows for suppleness without 

surrendering efficiency. 

One of the most exciting systems to be assembled on top of the TinyOS platform is one call Tiny DB. Tiny DB is 

designed to transform a wireless sensor network into spilling database. SQL queries are entered into a user interface and 

broadcasted onto the sensor network. The network executes the queries over inward sensor readings and returns the results. 

Just like in normal SQL, these queries can include combination operations to refine the data into averages, max, or min 

values. The TinyDB query optimizer mechanically distributes the accumulation operations into the network. 

CONCLUSIONS  

This paper has accessible a system architecture for wireless sensor nodes that is capable of addressing the strict 

requirements of wireless sensor networks. By exploiting a single shared controller that is amplified by a collection of 

specialized hardware accelerators, the architecture is able to support stretchy, application-specific communications 



78                                                                                                                                                                         Rahmaan K, Anbumani P & Narendran M 

protocols without surrendering efficiency. This architecture has been validated through the development of three hardware 

boards and a software operating system. 

We have developed the TinyOS operating system which delivers the fine-grained concurrency apparatuses 

required to implement wireless sensor network protocols and applications. TinyOS influences an event based execution 

model to efficiently share a single processor across multiple autonomous functional operations. Additionally, TinyOS 

delivers a highly-efficient constituent model that has almost no runtime overhead yet allows application developers to 

partition submissions into easy-to-manage modules. This allows for the component modules to be verified self-sufficiently 

before composing them together into a complete application. 

We have presented a comprehensive architecture that addresses key issues that arise when building a wireless 

sensor network device that must meet strict power consumption and size requirements. They include flexibility, fine-

grained concurrency, precise harmonization and decoupling between RF and data path speed. We argue that these 

properties must be present in the system architecture in order to support wireless sensor network solicitations. The platform 

must be flexible enough to meet the wide range of application necessities that sensor networks are addressing. We have 

identified core application situations that range from environmental data collection to security networks to node tracking 

networks.  

Each scenario has substantially different communication patters and protocols that must be supported by 

particular hardware architecture. To validate our general construction we first presented the Mica node. Composed from 

off-the- shelf apparatuses, it only approximated our general architecture. It included dedicated hardware accelerators that 

help decouple the RF and data path speed and increase the synchronization accuracy of communication protocols. In 

evaluation of this stage we demonstrated how these simple accelerators result in significant performance improvements 

without losing suppleness. The Mica platform has proven itself both in theory and finished deployment in long-term 

battery operated application situations. 

We have made the leap beyond the competences of off-the-shelf hardware by fully realizing our general 

architecture in the form a single-chip CMOS device called Spec. Unimpeded by the capabilities of commercially available 

components we have integrated a suite of hardware accelerators and custom radio in order to realize order-of magnitude 

improvements on key evaluation metrics. These include critical metrics such as communication rates processing overhead 

for start symbol detection and timing accuracy. 

Spec is representative of the upcoming of wireless sensor network devices. In addition to micro-benchmarks and 

theoretical analysis, we have also presented real-world application deployments. We have grounded our study by going as 

far as taking our nodes to the punishment to track military vehicle movement during a live-fire training exercise. We have 

also tracked scale size vehicles in mock-up situations, and deployed countless-other investigational networks. The Mica 

platform combined with TinyOS has been transported to over 250 administrations to be the foundation of a countrywide 

effort into wireless sensor network investigation and development. 

ACKNOWLEDGEMENTS 

The authors would like to thank the reviewers for their detailed comments.  

REFERENCES 

1. W.R.Heinzelman, A. Chandrakasan, and H.Balakrishnan,”Energy-Efficient communication protocol for wireless 

micro sensor networks”, in proceedings of HICSS-33, pp.3005-3014, January 2000.  



Survey on System Architecture for Wireless Sensor Networks                                                                                                                                         79 

2. N. Labroche, N. Monmarch´e, and G. Venturini, “A new clustering algorithm based on the chemical recognition 

system of ants,” in Proceedings of ECAI 2002, pp. 345–349, July 2002. 

3. A. E. Langham and P. W. Grant, “Using competing ant colonies to solve k-way partitioning problems with 

foraging and raiding strategies,” in Proceedings of the 5th European Conference on Artificial Life, September 

1999. 

4. I.Akyilidiz et al.,” Wireless sensor networks: a survey, “Computer Networks, Vol 38, pp.393-422, March 2002 

5. Ying Liang Hang Li “An Energy-Efficient Clustering Algorithm for Wireless Sensor Sensor Network” . March 

2006. 

6. Junpei Kamimura, Naoki Wakamiya, Masayuki Murata,” Energy-Efficient Clustering Method for Data Gathering 

in Sensor Networks” January 2004. 

7. Culler, D.E., J. Singh, and A. Gupta, Parallel Computer architecture a hardware/software approach. 1999. 

8. Esser, R. and R. Knecht, Intel Paragon XP/S - architecture and software environment. 1993: Technical Report 

KFA-ZAM-IB-9305. 

9. Culler, D.E., et al. Fine-grain parallelism with minimal hardware support: a compiler-controlled threaded abstract 

machine. 1991. 

10. Blumofe, R., et al., Cilk: An Efficient Multithreaded Runtime System. Proceedings of the 5th Symposium on 

Principles and Practice of Parallel Programming, 1995. 

11. Hu, J., I. Pyarali, and D. Schmidt, Measuring the Impact of Event Dispatching and Concurrency Models on Web 

Server Performance Over High-speed Networks. Proceedings of the 2 nd Global Internet Conference, IEEE, 1997. 

12. Von Eicken, T., et al. Active messages: a mechanism for integrated communication and computation. in 19th 

Annual International Symposium on Computer Architecture. 1992. 

13. Gay, D., et al., The nesC Language: A Holistic Approach to Networked Embedded Systems. 2003: Programming 

Language Design and Implementation (PLDI). 

14. Renesse, R.V., et al., A framework for protocol composition in horus. 1995: Proceedings of the ACM Symposium 

on Principles of Distributed Computing. 

15. Agarwal, A., et al., The MIT alewife machine: A large-scale distributed-memory multi-processor. 1991: 

Proceedings of Workshop on Scalable Shared Memory Multiprocessors. 

16. Montz, A.B., et al., Scout: A communications-oriented operating system. 1995: 

17. Hutchinson, N.C. and L.L. Peterson, The x-kernel: An architecture for implementing network protocols. 1991: 

IEEE Transactions on Software Engineering. p. 17(1):64-76. 

18. Want, R., et al., The Active Badge Location System. ORL, 24a Trumpington Street, Cambridge CB2 1QA, 1992. 

19. Bahl, P. and V. Padmanabhan, RADAR: An in-building RF-based user location and tracking system. IEEE 

Infocom, 2000. 2: p. 775 

20. Chandrakasan, A.P., S. Sheng, and R.W. Brodersen, Low Power CMOS Digital Design. 1992, University of 

California Berkeley. 



80                                                                                                                                                                         Rahmaan K, Anbumani P & Narendran M 

21. Pering, T., T. Burd, and R. Brodersen, The Simulation and Evaluation of Dynamic Voltage Scaling Algorithms. 

1998. 

22. Ye, W., J. Heidemenn, and D. Estrin, An Energy-Efficient MAC Protocol for Wireless Sensor Networks. 2001: 

Submitted for review, July 2001. 

23. Stemm, M., et al. Reducing power consumption of network interfaces in handheld devices. in International 

Workshop on Mobile Multimedia Communications (MoMuc-3). 1996. Princeton, NJ. 

24. Lamport, L., Time, clocks, and the ordering of events in a distributed system. Comm., 1978. ACM 21(7): p. 558-

565. 

25. Mills, D.L., Internet time synchronization: the Network Time Protocol. IEEE Trans. Communications, 1991. 

COM-39(10): p. 1482-1493. 

26. Doherty, L., K.S.J. Pister, and L.E. Ghaoui. Convex position estimation in wireless sensor networks. in IEEE 

Infocom. 2001: IEEE Computer Society Press. 

27. Borriello, J.H.a.G., Location Systems of Ubiuitous Computing. Computer, 2001.34(8): p. 57-66. 

28. Priyantha, N.B., A. Chakraborty, and H. Balakrishnan. The Circket Location- Support System. in MobiCom 2000. 

2000. Boston, Massachusetts. 

29. Molnar, A., Personal Communication. 2004: To be submitted to IEEE International Solid-State Circuits 

Conference 2004. 


